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errors arising from coding mistakes or inadequacies 
of the resolution of the calculation. These fall under 
the category of code verification, which must go hand 
in hand with the overall validation effort [ 1,2]. 

The process of validation of a simulation code for 
an intended purpose should be based on a hierarchy of 
experiments. There should be experiments that are de- 
signed to characterize the basic physics models. Such 
experiments, which optimally require only one physics 
model to analyze, can be called basic experiments. Of- 
ten, these do not even require the full simulation code 
for their analysis. Whereas basic experiments involve 
only a single physics model, integrated experiments 
require two or more physics models. Ideally the hierar- 
chy of experiments should include some with various 
degrees of integration, up to fully integrated experi- 
ments that involve all relevant physics models. Clearly 
the experiments should span the range of physical con- 
ditions relevant to the target application. 

This paper starts with a description of a general 
approach to analyzing individual experiments with 
an emphasis on uncertainty analysis. A Monte Carlo 
method is presented for propagating uncertainties in 
underlying physics models into uncertainties in simu- 
lation predictions. A probabilistic network is proposed 
for conceptualizing the process of analyzing a large 
number of experiments. It also provides the basis for 
a logically consistent, complete, and comprehensive 
implementation, as explained below. 

While several ways to implement this approach are 
described, the best choice for the uncertainty assess- 
ment of any specific simulation code will depend on 
many factors, including the computational complex- 
ity of the simulation, the number of experiments, the 
number of parameters, and the complexity of the ex- 
perimental analysis. 

2. Analysis of individual experiments 

Fig. 1 schematically outlines the conceptual steps 
taken to analyze any experiment. The basic idea is that 
one tries to account for the measurements, represented 
by the vector Y, obtained in an experiment by analyz- 
ing them in terms of a model of the experimental situ- 

ation. The preparation of the physical system is shown 
as a time-dependent state \I, (t). This representation is 
perhaps more general than required for some experi- 
ments, but may be needed to analyze integrated exper- 
iments. The physical system believed to be observed is 
transformed into a set of predicted measurements Y* 
by a model of the measurement system. This model 
should include all known effects in measurement pro- 
cess, for example, the effects of finite time or spatial 
resolution, sensitivity curve for the sensors used, etc. 
The predicted measurements Y* are a function of the 
parameters imbedded in the physics model (Y, which 
are to be determined from the analysis. Fig. 1 is meant 
to imply a point evaluation of the quantities shown, 
that is, the state of the system and the predicted mea- 
surements are evaluated for each parameter vector a! 
specified. 

The typical approach taken to determine the model 
parameters a! is to find the parameters that minimize 
the mean square difference between Y * and Y, which, 
when normalized to the variance in the measurement 
uncertainty cr 2, is what physicists call chi-squared: 
X * = Ci(Yi - Y,*)“/of. This general approach is 
referred to by physicists as fitting a model to data, and 
by statisticians as regression. The rationale for this 
approach and the accompanying uncertainty analysis 
is outlined in the next section. 

In integrated experiments, where more than one 
physics model is required to simulate the experiment, 
the data-flow diagram in Fig. 1 still applies, except 
that the model box feeding the simulation is replaced 
by several model boxes. 

The quality of experimental measurements is cru- 
cially important since they form the basis for inference 
about the physics models. All the usual care must be 
exercised in conducting these experiments. The exper- 
imentalist and analyst must pay particular attention to 
correlations between uncertainties. Correlations often 
exist between the uncertainties associated with differ- 
ent measurements. Furthermore, the process of ana- 
lyzing a data set in terms of several parameters al- 
most always results in correlations between the uncer- 
tainties in those parameters. It is crucially important 
to the final inference process that correlations be un- 
derstood and included in each step of the analysis. A 
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Fig. 1. Data-flow diagram showing the general scheme for analyzing the measurements Y from a single experiment. The simulation code 
uses the parameters cx to predict the time-dependent behavior of a physical system. A measurement system model describes the connection 

. between the physical system and the experimental measurements. The parameters are estimated by minimizing the difference between the 
measurements predicted by the simulation code Y* and the actual Y, as quantified by the minus-log-likelihood. 

related issue is that of systematic uncertainties, which 
are uncertainties in an experiment that affect many (or 
all) measurements [3]. All means should be taken to 
reduce systematic uncertainties as much as possible 
and then to include them in the uncertainty analysis. 

t 

I. 

An underlying issue in solving the minimization 
problem implied by Fig. 1 is how to efficiently find the 
minimum, particularly when there are many parame- 
ters to be found and the simulation calculation takes a 
long time. Under the right circumstances, when there 
are many parameters to optimize, it is very beneficial 
to use gradient-based optimization methods. The gra- 
dient of the objective function with respect to the pa- 
rameters of interest may be calculated in a time com- 
parable to the forward simulation time using the tech- 
nique of adjoint difirentiation [4]. In principle, ad- 
joint differentiation can be implemented for any com- 
putational code for which the outputs are differentiable 
with respect to the variables in the problem. Giering 
[5] has developed a useful compiler for forward codes 
written in FORTRAN to automatically create the code 
necessary to calculate the desired gradients [6]. 

Experience with several kinds of simulation codes 
[7-l I] reinforces my conviction that adjoint differen- 
tiation is an enabling technique for problems of this 
sort. In this paper I will mention the areas where it 
might be of benefit. However, the overall framework 
presented here does not rely on using adjoint differ- 
entiation. 

The data-flow diagram shown in Fig. 1 may be em- 
ployed not only as a description of the analysis, but 
also as a basis for implementing the calculation. In 
the well-known image-processing application Khoros 

[12], the course of the calculation may be laid out us- 
ing a graphically programmed data-flow diagram. In 
the Bayes Inference Engine (BIE) [7], which we have 
developed at Los Alamos for radiographic modeling, 
the forward modeling process is graphically specified 
by an analyst in terms of a diagram very similar to that 
shown in Fig. 1 and the BIE solves the inverse prob- 
lem, i.e., finds the parameters that minimize x2, for 
example. This close connection between a graphical 
representation of a conceptual approach and the actual 
implementation of the solution will be suggested as a 
viable means to assess the uncertainties in simulation 
codes. 

7 

2.1. Uncertainty analysis 

In the past the traditional process of analyzing the 
measurements from physics experiments and estimat- 
ing the uncertainties in the derived model parameters 
has been called error analysis [13,14,3]. In common 
usage, the term ‘error’ often connotes an identifiable 
mistake, which is potentially correctable. It seems that 
this process might be better called uncertainty anal- 
ysis. Furthermore, this phrase implies what we really 
intend, a statement of what we know (or do not know) 
about the parameters that we have tried to measure. 

In a probabilistic approach to uncertainty analysis, 
uncertainties are expressed in terms of a probabil- 
ity density function (PDF) defined on the parameters 
[l-17]. As in the previous section, let’s assume that 
an experiment is performed and the measurements, 
represented by the vector Y, are obtained. A model M 
with associated parameters 0, is used to analyze the 
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experimental results. (I use 0 here to represent generic 
parameters.) The PDF describing the uncertainty the 
parameters is p(B IY, M). This so-called posterior is 
given by the fundamental rule of probability, Bayes 
law, as 

P(~IY, Ml a P(W> M)p(WW> (1) 

where p(Y 10, M), is the likelihood of the measure- 
ments and p(e IM) is the prior on the parameters. 

The ZikeZihood comes from comparing the actual 
measurements to the measurements predicted on the 
basis of the model of the physical system. The pre- 
dicted measurements are generated using a model 
for how the measurements are related to the physi- 
cal system, which we call the measurement system 
model. Under the assumption that the measurements 
are stochastically degraded by uncorrelated and addi- 
tive Gaussian noise, the likelihood is proportional to 
the exponential of -ix*. The prior in (1) can sup- 
ply knowledge coming from previous measurements, 
specific information regarding the object itself, or 
simply general knowledge about the parameters, e.g., 
that they are nonnegative. 

In terms of this nomenclature, we see that the ap- 
proach described in the previous section amounts to 
finding the parameters that maximize the posterior un- 
der the assumption of a Gaussian distribution for the 
measurement uncertainties and in the absence of prior 
information, i.e., a flat prior. The approach of estimat- 
ing the parameters by maximizing the posterior is re- 
ferred to as maximum a posteriori (MAP) estimation. 
Although not important for the present discussion, is 
should be noted that other types of estimators can be 
argued to be more appropriate in some circumstances. 

It is often more convenient to work with logarithms 
of probabilities rather than with the probabilities them- 
selves. Then Bayes law (1) becomes additive instead 
of multiplicative: 

9 = -bawy, MI1 
= -logb(W, MI1 - log[p$‘lM)l + C(M). 

(2) 

The condition for minimizing rp, to obtain the MAP 
parameter estimate, is that its gradient with respect to 

the parameters is zero: 00~ = 0, when 8 is uncon- 
strained. 

As the posterior describes our state of knowledge 
about the parameters, parameter uncertainties are es- 
timated by characterizing the width or spread of the 
posterior. The most often used means of summariz- 
ing uncertainties is in terms of root mean-square de- 
viation. Another often relevant characterization is in 
terms of confidence interval, e.g., stating the proba- 
bility that the true value of a parameter is within a 
specified interval. The point is that the posterior can 
be used to determine any characterization of the un- 
certainties that one wishes to use. 

One of the potential difficulties in probabilistic 
analysis is handling nuisance parameters, that is, 
parameters that are necessary to describe the model 
of the physical situation, but are ultimately of no 
interest. For example, if the initial state of the sim- 
ulation of an experiment is uncertain, it would be 
important to include that uncertainty in the analysis 
of the data because it will degrade the uncertainty 
in the desired model parameters. However, the es- 
timated initial state is immaterial, as far as model 
inference is concerned. The posterior will typically 
be a joint probability distribution in all the param- 
eters, those of interest, as well as the nuisance pa- 
rameters. The appropriate way to handle nuisance 
parameters is to integrate the joint distribution over 
the useless parameters, a process called marginalizu- 
tion. If there are a lot of nuisance parameters, this 
marginalization can be difficult, even computationally 
intractable. 

A subtle, but real, source of uncertainty in simu- 
lation predictions is the uncertainty associated with 
the form of the incorporated physics models. Often 
the form used to represent a physical relationship is 
heuristically chosen. Even if the form is chosen on 
the basis of physical reasoning, but may still be in- 
correct. Uncertainties in the form of the models, also 
called structural uncertainties [ 18,191, obviously must 
be taken into account in assessing simulation uncer- 
tainties. The general approach to estimating structural 
uncertainties is to consider alternative suitable models 
and determine how well they are rejected by experi- 
mental data. 
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There is a close connection between these structural 
uncertainties and the issue of the operating range of the 
underlying independent physical variables that have 
been measured by the experiments. When it is neces- 
sary to extrapolate beyond range probed by the avail- 
able experiments, structural uncertainties will lead to 

their mean positions, Bi, and eexp, respectively, Bayes 
law, in its logarithmic form, yields the simple result 
for the posterior 

it 
rapid growth in the uncertainties in the model behav- 
ior. These considerations imply the desirability to plan 
and conduct experiments that fill out the physical op- 

. erating regime of the intended use of the simulation 
code. 

2.2. Gaussian approximation 

K out = Kexp + Kin, (5) 

eout = K~~CKexpeexp + Kdinl, (6) 

where Kout is the Hessian and 8,,, the mean position 
of the posterior. One obtains the usual rule for com- 
bining the covariance and the mean for the product of 
two Gaussian distributions [14] by replacing the Hes- 
sians in (5) and (6) with the inverse of the correspond- 
ing covariance matrices. 

It is often the case, or at least often assumed, that 
uncertainties follow a Gaussian distribution, which 
means that the minus-log-posterior q is quadratic: 

up = cpo + (e - eOjTK(e - e,), (3) 

where 00 is the parameter vector at the minimum in 
q and K is the curvature matrix of q, 

A novel method of estimating uncertainties for 
Gaussian distributions is to probe the model stz@ess 
[20]. This method amounts to minimizing p in the 
presence of a force applied to the model. The dis- 
placement of the parameters away from their MAP 
solution is given by Af3 = Cf, where f is the ap- 
plied force, specified in the space of the parameters. 
This method provides correlations between every 
parameter and the probing force vector. 

K = V&. (4) 

This matrix is also called the Hessian. It is fundamen- 
tally important in uncertainty analysis because of the 
the well-known relationship that the covariance ma- 
trix of a multi-dimensional Gaussian is given by C = 
K-l. 

2.3. Murkov chain Monte Carlo 

I 

-. 

The covariance matrix is the second moment of the 
posterior about its mean: [C]ij = ((Bi -ei)(ej US,)), 
where the angle brackets indicate an expectation over 
the posterior distribution. It completely summarizes 
the second-order statistics of a Gaussian posterior, in- 
&ding its width and correlations between the uncer- 
tainties in different parameters through its off-diagonal 
elements. Under the assumption of Gaussian distribu- 
tions and using p = ix 2, the calculation of the covari- 
ante matrix described above is equivalent to standard 
uncertainty analysis [ 131. Marginalization is taken into 
account in the covariance matrix C in the sense that 
one can simply ignore the elements of C correspond- 
ing to the nuisance parameters. 

The Murkov chain Monte Carlo (MCMC) technique 
provides a way to generate a sequence of random pa- 
rameter vectors drawn from an arbitrary target PDF. 
The usefulness of MCMC in probabilistic analysis is 
well established [21-241. The simplest approach is to 
use the Metropolis algorithm [25], in which one tries 
to move from the current position in parameter space 
by randomly selecting a trial displacement from a sym- 
metric probability distribution. Each trial step is ei- 
ther accepted or rejected on the basis of the probabil- 
ity at the new position relative to that at the previous 
one. This algorithm is widely employed because of its 
simplicity. In the data-flow diagram shown in Fig. 1, 
MCMC would take the place of the optimizer, allow- 
ing it to change the parameters and observe the corre- 
sponding minus-log-posterior. The covariance matrix 
C may be obtained using MCMC by directly comput- 
ing the second moments of the MCMC sequence. 

For Gaussian prior and likelihood distributions, One of the advantages of MCMC is that it can han- 
characterized by their Hessians Kin and Kexp, and by dle almost arbitrary distributions, alleviating the need 
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to approximate the posterior by a Gaussian distribu- 
tion. As such, MCMC provides a generally usable 
means to determine the extent of a posterior and thus 
to assess uncertainties. Another advantage of MCMC 
is that it automatically accomplishes marginalization 
over nuisance parameters. By sampling the full joint 
probability distribution, as MCMC does, when one 
determines the distribution of a subset of parameters, 
the remaining parameters are automatically integrated 
out. 

The inefficiency of MCMC is a potential problem. 
The steps for the Metropolis algorithm are often cho- 
sen independently for each parameter. However, most 
posterior distributions possess some degree of corre- 
lation between the parameters. By not taking these 
correlations into account, the independent step dis- 
tribution can lead to substantial calculational ineffi- 
ciency. This inefficiency results in correlation between 
successive samples taken from the MCMC sequence, 
which means that a reduced number of samples can 
adequately represent the full sequence. A number of 
schemes for improving the efficiency of MCMC ex- 
ist [26-301, most of which are adaptive, and many of 
which require the gradient of q with respect to the 
parameters. Therefore, adjoint differentiation can be 
very helpful in making MCMC more efficient. 

3. Uncertainty in simulation-code predictions 

The goal of the present work is to determine the 
uncertainties in simulating a new situation, which are 
produced by the uncertainties in the physics models. 
A conceptually simple Monte Carlo approach to ob- 
taining these uncertainties is shown in Fig. 2. The pro- 
cess amounts to drawing random parameter vectors 
from their posterior distribution, which can be thought 
of as comprising a plausible set of parameter vectors. 
Running the simulation code separately for each ran- 
dom parameter vector results in a set of corresponding 
plausible simulation predictions, which can be used to 
characterize the uncertainty in the prediction in what- 
ever way appropriate. This process produces the pos- 
terior predictive distribution [22], as it is known in 
statistics. 

Fig. 2. Data-flow diagram showing how the uncertainties in a 
simulation prediction arising from parameter uncertainties can be 
estimated by running the simulation code for a set of plausible 
parameters {a}. The resulting set of plausible predictions represents 
the uncertainty distribution of the prediction. 

The same technique can be employed if one is work- 
ing directly with the Hessian or covariance matrices to 
describe the posterior. Then matrix techniques can be 
used to directly generate a sequence of random draws 
from the posterior, approximated by a Gaussian. One 
needs to calculate the square root of the covariance 
matrix C 1/2 by singu ar- 1 value decomposition [3 11. 
Random parameter vectors with the correct covari- 
ante are then obtained by multiplying random vectors 
drawn from an independent, univariate Gaussian dis- 
tribution by C ‘12. 

A virtue of most Monte Carlo calculations is that 
new sources of stochastic behavior are easily incorpo- 
rated. For example, uncertainties in the initial state of 
a physical system may be included in the above pro- 
cess by randomly drawing initial states from the prob- 
ability distribution associated with those uncertainties 
each time the simulation is run with a new random 
parameter vector. 

Other approaches to estimating the uncertainty in 
a simulation prediction may potentially be useful, in- 
cluding extensions to a posteriori error analysis [32], 
which can effectively propagate the error through the 
simulation. However, because this technique requires 
an auxiliary forward code that solves another set of 
differential equations, it may not be easy to implement. 

4. Analysis of many experiments 

Consider the sequential analysis of two experi- 
ments, as depicted by the bubble diagram shown in 
Fig. 3. Experiment 1 is a basic experiment since it 
only involves a single model, associated with (Y. Using 



K.M. Hanson/Physics D 133 (1999) 179-188 185 

Fig. 3. A sequential analysis involving two experiments. Interpreted 
as a probabilistic network, each bubble represents the use of Bayes 
law by combining the likelihood PDF from the measurements with 
the PDF inputs from the left for the prior information to obtain 
the output PDF on the right, the posterior. 

the type of analysis described in Section 2.1, starting 
with a flat prior p(a), the analysis of this experiment 
results in improved knowledge about the parameter 
vector (Y, as summarized by the posterior p@ (Y 1). 
The second experiment requires the model associated 
with (Y, as well as another model associated with /?, to 
analyze. It is an integrated experiment. One approach 
might be to consider ff to be completely determined 
by Experiment 1 and keep it fixed in the second anal- 
ysis. However, it seems desirable to use Experiment 
2 to learn something further about ~1. The implication 
is that both (Y and B should be varied in analyzing the 
second experiment. 

4.1. Probabilistic network 

A full probabilistic analysis of the two experiments 
yields the posterior in (Y and B, given the experimental 
measurements from both experiments. Using the rules 
of probability: 

PC@> BIYl, Y2) m PVl, Y21@, B)Pb, B>, (7) 

P(@,BIYl, Y2) a P~~lI~~P~~2l~,B~P~~~P~B~. (8) 

In going from (7) to (8), it is necessary to invoke 
statistical independence of the priors on (Y and /!l and of 
the measurements from the two experiments. Taking 
the minus logarithm of Eq. (S), we obtain 

-l%[P@, BIYl, Y2)l = -l%[P(Y1l~)l - hdP(~)l 

-log[ p(YzJa, B>l - log[ p(B)] + constant. (9) 

Comparison of Eq. (9) with Fig. 3 shows that 
the effective action of each bubble is to add 
its inputs, consisting of minus-log-priors, to the 
minus-log-likelihood of its experimental measure- 
ments to get the minus-log-posterior. Each bubble 

implements Bayes law in its logarithmic form (2). Eq. 
(9) illustrates the cumulative property of Bayes law; 
by using the posterior of one analysis as the prior of 
the next, the result is the same as if both likelihoods 
were simultaneously used in a single grand analysis. 
We see that Fig. 3 actually represents a probabilistic 
network. 

Note that the output of each bubble is a PDF over the 
parameters shown next to the output. A consequence 
of this approach is that the joint PDF involves increas- 
ingly more parameters as one moves up the hierarchy 
from basic experiments up to fully integrated ones. 

The crucial requirement for the simplicity of the 
additive rule is that the experimental measurements be 
independent. If they are not independent, that can be 
taken into account in the algebra associated with the 
bubbles. 

A more elaborate probabilistic network involving 
five experiments is shown in Fig. 4. It is clear from the 
diagram that Experiments 1, 3, and 4 are basic exper- 
iments. Experiment 2 involves a low level of integra- 
tion since it provides information about two models. 
Experiment 5 is fully integrated since it incorporates 
all the models. The output of the last bubble is a joint 
PDF in all the model parameters. 

This kind of bubble diagram has clear benefits for 
describing a sequence of analyses. I will explain in the 
next section how such a probabilistic network forms a 
useful basis for a computational approach to keeping 
track of a complicated series of analyses. The bubble 
diagrams shown in Figs. 3 and 4 are similar to other 
forms of probabilistic networks [33] or Bayesian net- 
works [34]. 

4.2. Implementation considerations 

Validation of complex simulation codes that employ 
many physics models will typically require numerous 
experiments, performed over a wide range of levels of 
integration. The task of comprehending which exper- 
iments have been conducted and how their results in- 
fluence the final configuration of the simulation code 
is potentially overwhelming. It is natural to consider 
using the bubble diagram described in the preceding 
section as a means for graphically depicting the flow 
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Fig. 4. A probabilistic network for analyzing five experiments results in the joint posterior in the parameters for all models involved, i.e., 
a, B, Y. and 6. 

of the analysis. The corresponding probabilistic net- 
work provides the means to quantitatively summarize 
our knowledge about the models. 

The validation process would greatly benefit by im- 
plementation of the probabilistic network using an 
object-oriented (00) design. The graphical display of 
the full analysis sequence would help visualize the 
logic of the analysis. One would have the ability to 
check intermediate results in the analysis sequence, 
which may be important when it comes to model 
checking (see Section 4.3). Since each bubble repre- 
sents an experiment and its related data analysis, the 
information associated the probabilistic network really 
forms a database for the validation process. The logic 
of the graph may be checked automatically, e.g., by 
checking dependencies of final results on each exper- 
iment to make sure a single experiment is not counted 
more than once. 

Operationally, the output of each bubble represents 
a PDF defined over a certain set of parameters. In a 
Gaussian approximation, this joint PDF is defined in 
terms of a mean vector and covariance matrix. Because 
of the simplicity of using minus-log-probabilities al- 
ready mentioned, it is proposed to use the curvature 
matrix (or Hessian), instead of the covariance matrix, 
to represent the width of the Gaussian. Of course, as 
one moves through the sequence of analyses, the num- 
ber of parameters steadily increases. This varying data 
structure is easy to handle in an 00 design. Because 
of the additive nature of the logarithmic form of Bayes 
law (9), updates of the parameter mean and the Hes- 
sian affect only the parameter components over which 
they are defined. When new parameters are included, 

they do not mix with the old parameters except through 
the likelihood of a new experiment. Whenever the co- 
variance describing the uncertainties in the parameters 
is desired, it is necessary to invert the Hessian. 

Critical to the proper functioning of the probabilis- 
tic network is the quality of the information employed 
in each bubble. A bubble must supply a probabilis- 
tic description of the likelihood in terms of the model 
parameters used to analyze the experimental measure- 
ments. Thus, a full uncertainty analysis must be carried 
out, taking into account the details described above, 
e.g., marginalization over nuisance parameters, such 
as uncertainties in the experimental initial conditions. 
It is perhaps simplest to think of that process in terms 
of using MCMC to sample the likelihood, computing 
the mean vector and covariance matrix of the relevant 
parameters, and taking the inverse of the covariance 
matrix to obtain the Hessian. 

As mentioned above, one must be careful to not 
count the contribution from any given likelihood twice. 
Therefore, the output of each bubble is not really 
just the sum of its input minus-log-priors and internal 
minus-log-likelihood. There is a need to check depen- 
dencies at each point where the accumulated posterior 
is desired. One way to handle this is to have each ac- 
cumulating bubble broadcast backwards through the 
graph a request for contributions. As each bubble con- 
nected to it through the backward path responds, du- 
plicated contributions can be flagged and avoided in 
the summation process. 

Finally, it is possible to translate an instantiated 
probabilistic network into a computer script, which ef- 
fectively summarizes the network. This script can be 
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used to archive the analysis or to translate it into text 
for a written summary. 

4.3, Model checking 

Model checking is an essential aspect of any effort 

: to build and understand models [22]. Model checking 
/ amounts to looking for inconsistencies between exper- 

imental measurements and the models. This process 
ideally takes place at every level of analysis, from an- 
alyzing separate data runs in a single experiment, to 
the analysis of the experiment in terms of a model, 
all the way up to the comparison between several ex- 
periments. Since in the scheme suggested here, all pa- 
rameters are subject to change as new experiments are 
added to the comprehensive analysis, one must be able 
to revisit previous analyses and resolve discrepancies. 
All disagreements should be diagnosed to determine 
the source of problem, namely, are the experimental 
results suspect, or plainly wrong, or does the physics 
model need to be altered. 

It may be helpful to try to identify model shortcom- 
ings using sensitivity analysis. One of the most potent 
uses of adjoint differentiation, when viewed in terms 
of the elemental representation of a model, is to rec- 
ognize how the structure of that model needs to be 
changed to accommodate the data [9]. 

Model-based approaches to dealing with discrepant 
data, or outliers, will be useful in model checking. 
One approach is to assign to each experimental result 
a probability that it is acceptable, or similarly, a mul- 
tiplicative deweighting factor [35]. In combining sev- 
eral experiments, the weight of each one is affected 
by how well it agrees with the others. Another ap- 

T preach is to treat the likelihood function of each ex- 
periment, not as a Gaussian, but as a long-tailed dis- 
tribution, such as the Cauchy distribution [36], which 
effectively invokes a principle of majority rule when 
several results are combined. 

5. Discussion 

I have presented a framework for tackling one of 
the basic tasks needed for validating simulation codes, 

that of assessing the uncertainties in predictions that 
arise from uncertainties in the underlying models. 
Many details regarding implementation need to be 
resolved. How these are best handled will depend on 
the specifics of simulation code and the kind of mea- 
surements available. The suggested implementation is 
consistent with the notion that the validation should 
be viewed as an ongoing process [2]. Its dynamic and 
interactive nature permits one to link experimental 
results to a progressively changing simulation code, 
determine weak spots in the models, and design and 
conduct new experiments for reducing the uncertainty 
in predictions. 

Acknowledgements 

Many have helped me understand various aspects 
of simulation codes and uncertainty estimation in a 
Bayesian context including Julian Besag, Anges de 
C&y, Greg Cunningham, Eric Ferm, Wally Gilks, 
James Gubernatis, Rudy Henninger, Malvin Kalos, 
Bill Oberkampf, Richard Silver, John Skilling, and 
Tim Trucano. Work supported by U.S. Dept. of En- 
ergy under contract W-7405-ENG-36. 

References 

[l] W.L. Oberkampf, EB. Blottner, Amer. Inst. Aeron. Astron. 
.I. 36 (1998) 687. 

[Z] Guide for the Verification and Validation of Computational 
Fluid Dynamics Simulations, Tech. Rep. G-077-98, Amer. 
Inst. Aeronautics and Astronautics, 1998. 

[3] S.G. Rabinovich, Measurements Errors: Theory and Practice, 
Amer. Inst. Phys., New York, 1995. 

[4] W.C. Thacker, Automatic differentiation from an oceano- 
grapher’s perspective, in: A. Griewank, G.F. Corliss 
(Eds.), Automatic Differentiation of Algorithms: Theory, 
Implementation, and Application, SIAM, Philadelphia, 1991, 
p. 191. 

[5] R. Giering, Tangent Linear and Adjoint Model Compiler, 
Technical Report TAMC 4.7, Max-Planck-Institut fur 
Meteorologie, 1997 (e-mail: giering@dkrz.de). 

[6] G. Burgers, R. Giering, M. Fischer, Ann. Geophysicae. Cl4 
(1996) 390. 

[7] K.M. Hanson, G.S. Cunningham, The Bayes inference engine, 
in: K.M. Hanson, R.N. Silver (Eds.), Maximum Entropy and 
Bayesian Methods, Kluwer Academic Publishers, Dordrecht, 
1996, p. 125. 



188 KM Hanson/Phy~ica D 133 (1999) 179-188 

[8] S.S. Saquib, K.M. Hanson, G.S. Cunningham, Proc. SPIE 
3034 (1997) 369. 

[9] K.M. Hanson, G.S. Cunningham, S.S. Saquib, Inversion based 
on computational simulations, in: G. Erickson et al. (Eds.), 
Maximum Entropy and Bayesian Methods, Kluwer Academic 
Publishers, Dordrecht, 1998, pp. 121 ff. 

[lo] R.J. Henninger, P.J. Maudlin, M.L. Rightley, Accuracy of 
differential sensitivity for one-dimensional shock problems, 
in: S.C. Schmidt et al. (Eds.), Shock Compression of 
Condensed Matter, Amer. Inst. Physics, Woodbury, NY, 1998, 
in press. 

[ll] M.L.J. Rightley, R.J. Henninger, K.M. Hanson, Adjoint 
differentiation of hydrodynamic codes, in CNLS Research 
Highlights, Center for Nonlinear Studies, Los Alamos 
National Laboratory, April, 1998 WWW http://cnls. 
lanl.gov/Publications/highlights.html. 

[12] Khoral Research, Inc., 6200 Uptown Blvd. NE, Albuquerque, 
NM 87110.4142; URL: wwwkhoralcom. 

[13] P.R. Bevington, D.K. Robinson, Data Reduction and Error 
Analysis for the Physical Sciences, McGraw-Hill, New York, 
1992. 

[14] W.T. Eadie, D. Dryard, F.E. James, R. Roos, B. Sadoulet, 
Statistical Methods in Experimental Physics, North-Holland, 
Amsterdam, 1971. 

[15] J.J.K. d Ruanaidh, W.J. Fitzgerald, Numerical Bayesian 
Methods Applied to Signal Processing, Springer, New York, 
1996. 

[16] D.S. Sivia, Data Analysis: A Bayesian Tutorial, Clarendon, 
Oxford University Press, New York, 1996. 

[17] D.J.C. MacKay, Neural Computation 4 (1992) 415. 
[18] M.D. McKay, J.D. Morrison, Structural model uncertainty 

in stochastic simulations, Computing Science and Statistics 
28, Interface Foundation, Fairfax Station, VA 22039-7460, 
1997. 

[19] D. Draper, J. R. Statist. Sot. B 57 (1995) 49. 
[20] K.M. Hanson, G.S. Cunningham, Proc. SPIE 2434 (1995) 

416. 
[21] W.R. G&s, S. Richardson, D.J. Spiegelhalter, Markov Chain 

Monte Carlo in Practice, Chapman & Hall, London, 1996. 

[22] A. Gelman, J.B. Carlin, H.S. Stem, D.B. Rubin, Bayesian 
Data Analysis, Chapman & Hall, London, 1995. 

[23] J. Besag, P Green, D. Higdon, K. Mengersen, Stat. Sci. 10 
(1995) 3. 

[24] K.M. Hanson, G.S. Cunningham, R.J. McKee, Int. J. Imaging 
Systems Technol. 8 (1997) 506. 

[25] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. 
Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087. 

[26] W.R. Gilks, G.O. Roberts, Strategies for improving MCMC, 
in: W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), 
Markov Chain Monte Carlo in Practice, Chapman & Hall, 
London, 1996, p. 89. 

[27] A.E. Rafteiy, S.M. Lewis, Implementing MCMC, in: W.R. 
Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), Markov Chain 
Monte Carlo in Practice, Chapman & Hall, London, 1996, p. 
115. 

[28] K.M. Hanson, G.S. Cunningham, Proc. SPIE 3338 (1998) 
371. 

[29] R.M. Neal, Bayesian Learning for Neural Networks, Springer, 
New York, 1996. 

[30] J. Skilling, D.R.T. Robinson, S.F. Gull, Probabilistic displays, 
in: W.T. Grandy, Jr., L.H. Shick (Eds.), Maximum Entropy and 
Bayesian Methods, Kluwer Academic Publishers, Dordrecht, 
1991, p. 365. 

[31] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., 
Johns Hopkins University, Baltimore, 1996. 

[32] D. Estep. SIAM J. Numer. Anal. 32 (1995) 1. 
[33] G. Shafer, Probabilistic Expert Systems, SIAM, Philadelphia, 

1996. 
[34] EV Jensen, An Introduction to Bayesian Networks, Springer, 

New York, 1997. 
[353 V. Dose, W. von der Linden, Outlier tolerant parameter 

estimation, in: V. Dose et al. (Eds.), Maximum Entropy and 
Bayesian Methods, Kluwer Academic Publishers, Dordrecht, 
1998. 

[36] K.M. Hanson, D.R. Wolf, Estimators for the Cauchy 
distribution, in: G. Heidbreder (Ed.), Maximum Entropy and 
Bayesian Methods, Kluwer Academic Publishers, Dordrecht, 
1996, p. 255. 


